Capacity of a multiply-connected domain and nonexistence of Ginzburg-Landau minimizers with prescribed degrees on the boundary

نویسنده

  • L. Berlyand
چکیده

Suppose that ω ⊂ Ω ⊂ R. In the annular domain A = Ω \ ω̄ we consider the class J of complex valued maps having degree 1 on ∂Ω and ∂ω. It was conjectured in [5] that the existence of minimizers of the Ginzburg-Landau energy Eκ in J is completely determined by the value of the H-capacity cap(A) of the domain and the value of the Ginzburg-Landau parameter κ. The existence of minimizers of Eκ for all κ when cap(A) ≥ π (domain A is “thin”) and for small κ when cap(A) < π (domain A is “thick”) was demonstrated in [5]. Here we provide the answer for the case that was left open in [5]. We prove that, when cap(A) < π, there exists a finite threshold value κ1 of the Ginzburg-Landau parameter κ such that the minimum of the Ginzburg-Landau energy Eκ not attained in J when κ > κ1 while it is attained when κ < κ1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions

In a simply connected two dimensional domain Ω, we consider Ginzburg-Landau minimizers u with zero degree Dirichlet boundary condition g ∈ H1/2(∂Ω;S1). We prove uniqueness of u whenever either the energy or the Ginzburg-Landau parameter are small. This generalizes a result of Ye and Zhou requiring smoothness of g. We also obtain uniqueness when Ω is multiply connected and the degrees of the vor...

متن کامل

Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices

Let Ω be a 2D simply connected domain, ω be a simply connected subdomain of Ω and set A = Ω\ω. In the annular type domain A, we consider the class J of complex valued maps having degrees 1 on ∂Ω and on ∂ω. We investigate whether the minimum of the Ginzburg-Landau energy Eλ is attained in J , as well as the asymptotic behavior of minimizers as the coherency length λ−1/2 tends to 0. We show that ...

متن کامل

Local Minimizers of the Ginzburg-landau Functional with Prescribed Degrees

We consider, in a smooth bounded multiply connected domain D ⊂ R, the Ginzburg-Landau energy Eε(u) = 1 2 ∫ D { |∇u|2 + 1 2ε2 (1− |u|2)2 } subject to prescribed degree conditions on each component of ∂D. In general, minimal energy maps do not exist [4]. When D has a single hole, Berlyand and Rybalko [5] proved that for small ε local minimizers do exist. We extend the result in [5]: Eε(u) has, in...

متن کامل

Size of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions

The Ginzburg-Landau energy with semi-stiff boundary conditions is an intermediate model between the full Ginzburg-Landau equations, which make appear both a condensate wave function and a magnetic potential, and the simplified Ginzburg-Landau model, coupling the condensate wave function to a Dirichlet boundary condition. In the semi-stiff model, there is no magnetic potential. The boundary data...

متن کامل

Ginzburg-Landau minimizers with prescribed degrees. Emergence of vortices and existence/nonexistence of the minimizers

Let Ω be a 2D domain with a hole ω. In the domain A = Ω \ ω consider a class J of complex valued maps having degrees 1 and 1 on ∂Ω, ∂ω respectively. In a joint work with P. Mironescu we show that if cap(A) ≥ π (subcritical domain), minimizers of the Ginzburg-Landau energy E κ exist for each κ. They are vortexless and converge in H(A) to a minimizing S-valued harmonic map as the coherency length...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008